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Gkeyll: Robust continuum code for gyrokinetic edge
turbulence

Fusion gain in tokamaks depends
sensitively on the edge plasma
conditions.

Edge region is poorly understood and
for fundamental understanding requires
large-scale kinetic simulations.

This is difficult due to open and closed
field line magnetic topology, interaction
with tokamak wall and divertor plates,
significant interaction with neutrals and
large electromagnetic fluctuations.

Gkeyll aims to be a robust code capable of describing gyrokinetic turbulence

preserving conservation laws of gyrokinetic equations.
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Gkeyll provides a general framework for fluid and kinetic
simulation of plasmas

The design of Gkeyll allows one to create solvers for a variety of fluid and
kinetic problems, and “plug” them into the generic framework
(domain-decomposition, generic grid and data-structures, parallel I/O, and
a very powerful scripting facility) to do complex problems in plasma
physics.

At present, we have explicit finite-volume schemes and discontinuous
Galerkin schemes for a broad class of hyperbolic and other equations.

A class of discontinuous/continuous Galerkin schemes are
implemented to solve a class of kinetic problems, and used in
Vlasov-Poisson/Maxwell solvers, as well as gyrokinetics.

These are being used to support a number of different plasma
projects, both inside PPPL and at other institutions.
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Gkeyll being used in projects at PPPL and outside

At PU/PPPL: Eric Shi, G. Hammett, T. Stoltzfus-Dueck on gyrokinetics,
Jonathan Ng, A. Bhattacharjee on advanced fluid closures for multi-fluid
moment models, with application to magnetic reconnection. (Latter funded
via NSF/NASA grant to Amitava)

At U. Maryland: James (Jimmy) Juno, Jason TenBarge, B. Dorland on
continuum Vlasov-Maxwell solvers for use in solar wind turbulence studies.
NSF proposal being submitted to the SHINE program by Jason.

At Virgina Tech: Petr Cagas, Yang Song and B. Srinivasan on surface
physics in Hall thrusters with Vlasov-Poisson models. (This is a new project
at PPPL/VT funded by AFOSR, starting Sept. 1 for 4 years).

At U. New Hampshire: Liang Wang, K. Germaschewski Multi-fluid moment
global simulations of magnetosphere. Coupling to community-wide
OpenGGCM code.

At PU/PPPL: Rob Goldston, G. Hammett, M. Jaworski on exploring novel
“vapor box” divertor concept to handle heat exhaust in tokamaks.
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Gkeyll solves a general class of Hamiltonian evolution
equations

Evolution of distribution function can be described as Hamiltonian system

∂f

∂t
+ {f,H} = 0

f(t, z) is distribution function, H(z) is Hamiltonian and {g, f} is the Poisson
bracket operator. The coordinates z = (z1, . . . , zN ) label the N -dimensional
phase-space.
Defining α = (ż1, . . . , żN ), where żi = {zi, H}, gives

∂

∂t
(J f) +∇z · (Jαf) = 0

where J is Jacobian of the to (potentially) non-canonical coordinates. Note that
flow in phase-space is incompressible, i.e. ∇z · (Jα) = 0.
We need three ingredients: Hamiltonian, Poisson Bracket, and field equation.
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Example: Vlasov-Poisson with static magnetic field

The Vlasov equation for charged particles has Hamiltonian

H(x,v, t) =
1

2
mv2 + qφ(x, t)

where q is species charge and m is species mass and v is particle velocity.
The corresponding Poisson bracket is

{f, g} =
1

m
(∇xf · ∇vg −∇vf · ∇xg) +

qB0

m
· ∇vf ×∇vg

where B0 is the static magnetic field. The Jacobian is a constant, J = m3. The
fields are determined from

∇2
xφ(x, t) = −%c/ε0

The characteristic velocities are

ẋ = {x, H} = v; v̇ = {v, H} = q/m (−∇xφ+ v ×B0)

For time-dependent electromagnetic fields, the transformation from canonical to

noncanonical variables is time-dependent, and care is needed in determining

characteristic velocities.
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It is important to preserve quadratic invariants of
Hamiltonian systems

For any Hamiltonian system we can show that∫
K

H{f,H} dz =

∫
K

f{f,H} dz = 0

The first of this leads to conservation of total energy (on use of field equations),
while the second leads to conservation of

∫
K
f2dz (called enstrophy for

incompressible fluids, and related to entropy).

Energy conservation in Hamiltonian systems is indirect: we evolve the
distribution function and field equation. In fluid models, in contrast, the
energy conservation is direct, as we evolve the total energy equation (in
addition to density and momentum density equations). Hence, ensuring
energy conservation for Hamiltonian system is non-trivial, and difficult in
finite-volume schemes.

Energy conservation can be ensured using the famous finite-difference
Arakawa scheme (widely used in climate modeling and one of the top-twenty
algorithms ever published in JCP). However, Arakawa scheme is dispersive
and can lead to huge oscillations for grid-scale modes.
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Is it possible to design a scheme that is high-order, robust
and conserves total energy?

Answer: Yes, using a version of discontinuous Galerkin schemes. Summary:

Distribution function is discretized using discontinuous basis functions,
while Hamiltonian is assumed to be in a continuous subspace

With these assumptions, our algorithm conserves energy exactly, while
can optionally conserve the second quadratic invariant or decay it
monotonically.

The conservation of total energy is independent of upwinding! This is
a surprising result, as upwinding adds diffusion to the system. This
diffusion is actually desirable, as it gets rid of grid-scale oscillations.

Momentum conservation is independent of velocity space resolution,
and converges rapidly with resolution in configuration space.
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Discontinuous Galerkin algorithms represent state-of-art
for solution of hyperbolic partial differential equations

DG algorithms hot topic in CFD and applied mathematics. First introduced
by Reed and Hill in 1973 for neutron transport in 2D.

General formulation in pair of papers by Cockburn and Shu, JCP 1998. Total
of more than 1000 citations.

DG combines key advantages of finite-elements (low phase error, high
accuracy, flexible geometries) with finite-volume schemes (upwinding,
limiters to produce positivity/monotonicity, locality). Locality ensures that
one can make efficient use of parallel computing, and modern computing
architectures which work best when communication is minimized.

DG is inherently super-convergent: in FV methods interpolate p points to get
pth order accuracy. In DG interpolate p points to get 2p− 1 order accuracy.

DG combines best of FV schemes with standard FEM and may lead to
optimum algorithms for Hamiltonian PDEs.
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There are two key steps in DG: projection and numerical
fluxes

In DG one selects a discontinuous approximation space (usually piecewise
polynomials). Unlike FV schemes which only evolve cell averages, in DG
we also evolve higher moments.

Figure: The projection of x4 + sin(5x) onto piecewise constant (left), linear (middle) and
quadratic (right) spaces.
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Picking a good numerical flux is key to stability, accuracy

Consider the free-streaming problem ∂f/∂t+ ∂(vf)/∂x = 0. Question: how to
compute flux of particles (F̂ ≡ vf) at cell interface?

Take averages (central flux)

F̂h(f+
h , f

−
h ) = v(f+

h + f−h )/2

Use upwinding

F̂h(f+
h , f

−
h ) = vf−h v > 0

= vf+
h v < 0

For system of nonlinear equations (Euler, ideal MHD, etc.) there is cottage
industry on choosing numerical fluxes. Google “Riemann solver”. Gives about
70K+ hit! The key importance of Riemann solver is that they properly account
for the direction in which information propagates, ensuring physically correct
numerical fluxes.
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How to discretize Hamiltonian systems? Use discontinuous
space to discretize distribution function, and continuous
space for fields

Defining α = (ż1, . . . , żN ) as the phase-space velocity vector (assume J is
constant)

∂f

∂t
+∇ · (αf) = 0

Discrete problem is stated as: find fh in our selected approximation space, such
that for all test functions w the discrete weak-form∫

Kj

w
∂fh
∂t

dz +

∮
∂Kj

w−n ·αhF̂ dS −
∫
Kj

∇w ·αhfh dz = 0

is satisfied. Here F̂ = F̂ (f−h , f
+
h ) is a numerical flux function. (Subtle point:

normal component of characteristic velocity is continuous).
The discrete Poisson equation is obtained in a similar way (integration by parts),
except, the basis set now is global∮

∂Ω

ψ∇xφh · ndS −
∫

Ω

∇ψ · ∇xφh dx = − 1

ε0

∫
Ω

ψ%ch dx
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Requirement of energy conservation put constraints on
discrete Hamiltonian

To check if energy is conserved, use discrete Hamiltonian Hh in the
discrete weak-form to get∫

Kj

Hh
∂fh
∂t

dz +

∫
∂Kj

H−h n ·αhF̂ dS −
∫
Kj

∇Hh ·αh︸ ︷︷ ︸
=0 from {f,f}=0

fh dz = 0

On summation over all cells the second term will vanish only if Hh is
continuous. I.e. we get the required identity∑

j

∫
Kj

Hh
∂fh
∂t

dz = 0

Hence: Hh must lie in the continuous sub-set of the space use to define fh.
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This results, combined with field equation can be used to
prove conservation of total energy

Use Hamiltonian and sum over species to get∑
s

∑
Kj∈T

∫
Kj

(
1

2
mv2

h + qφh(x, t)

)
∂fh
∂t

dz = 0.

Integrating out (summing over) the velocity space we get∑
Ωj∈Tx

∫
Ωj

(
∂Eh
∂t

+ φh(x, t)
∂%ch
∂t

)
dx = 0,

Take time-derivative of discrete Poisson equation and use φh as test function∫
Ω

∇φh ·
∂

∂t
∇xφh dx =

1

ε0

∫
Ω

φh
∂%ch
∂t

dx

in this to show the conservation of total energy

∂

∂t

∫
Ω

(
Eh(x, t) +

ε0
2
|∇xφh(x, t)|2

)
dx = 0,
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Summary of conservation properties of scheme

The hybrid discontinuous/continuous Galerkin scheme has the following provable
properties

Proposition

Total number of particles are conserved exactly.

Proposition

The spatial scheme conserves total energy exactly.

Proposition

The spatial scheme exactly conserves the second quadratic invariant of the
distribution function when using a central flux, while monotonically decaying it
when using an upwind flux.

We were first to note a version of DG used by Liu & Shu (2000) for 2D hydro can

be extended to conserve energy for general Hamiltonian systems.
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For Vlasov-Poisson momentum conservation is not exact
but is independent of velocity resolution

Lack of momentum conservation can be traced to discontinuity in
electric field at cell interfaces.

However, one can show that as electric field depends on moments of
distribution function (and not distribution function itself), the
momentum conservation errors are independent of velocity space
resolution.

One can “fix” this problem by evolving a fluid momentum equation
and correcting the distribution function at each step. Corrections will
scale as ∆xp. (See Taitano, Chacon, and Simikov, JCP 2014)

One could construct a momentum conserving scheme, and then
energy errors would be independent of velocity space resolution. Could
correct for energy errors by solving an energy equation.
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We use a different approach for discretizing the
Vlasov-Maxwell equations

The Hamiltonian approach is more complicated for the full Vlasov-Maxwell
equations. (In fact, first noncanonical Hamiltonian formulation of the system not
given till 1980s! Morrison, PRL, 1980, Marsden & Weinstein Physica D, 1982).
For now, we are directly discretizing the Vlasov equation, without using the
Hamiltonian structure to derive the scheme:

∂fs
∂t

+∇x · (vfs) +∇v · (Fsfs) = 0

where Fs = qs/ms(E + v ×B). The EM fields are determined from Maxwell
equations (in contrast to evolving the potentials in the Hamiltonian formulation)

∂B

∂t
+∇×E = 0

ε0µ0
∂E

∂t
−∇×B = −µ0J
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We use DG for both Vlasov and Maxwell equations

Multiply Maxwell equations by basis ϕ and integrate over a cell. We have terms
like ∫

Ωj

ϕ∇×E︸ ︷︷ ︸
∇×(ϕE)−∇ϕ×E

d3x.

Gauss law can be used to convert one volume integral into a surface integral∫
Ωj

∇× (ϕE) d3x =

∮
∂Ωj

ds× (ϕE)

Using these expressions we can now write the discrete weak-form of Maxwell
equations as∫

Ωj

ϕ
∂Bh

∂t
d3x +

∮
∂Ωj

ds× (ϕ−Êh)−
∫

Ωj

∇ϕ×Eh d
3x = 0

ε0µ0

∫
Ωj

ϕ
∂Eh

∂t
d3x−

∮
∂Ωj

ds× (ϕ−B̂h) +

∫
Ωj

∇ϕ×Bh d
3x = −µ0

∫
Ωj

ϕJh d
3x.
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Is energy conserved? Are there any constraints on basis
functions/numerical fluxes?

Answer: Yes! If one is careful. We want to check if

d

dt

∑
j

∑
s

∫
Kj

1

2
m|v|2fh dz +

d

dt

∑
j

∫
Ωj

(
ε0
2
|Eh|2 +

1

2µ0
|Bh|2

)
d3x = 0

Proposition

If central-fluxes are used for Maxwell equations, and if |v|2 is projected to the
approximation space, the semi-discrete scheme conserves total (particles plus
field) energy exactly.

The proof is more complicated than in the Hamiltonian case, and requires some
careful analysis of the discrete equations (paper is being written up)

Remark
If upwind fluxes are used for Maxwell equations, the total energy will decay
monotonically. Note that the energy conservation does not depend on the fluxes
used to evolve Vlasov equation.
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There are significant, high-impact, projects for edge
gyrokinetics

We are working to demonstrate basic capability of DG to simulate edge
turbulence in a numerically robust way, but much work remains. Possible
projects that could use help:

Efficient Gaussian/Maxwellian-weighted basis functions. This is very
important, and has the potential to dramatically reduce velocity space
resolution requirements.
Flux limiters to preserve positivity
Implement local self-adjoint projection operators for efficient energy
conservation
Models (simple ones at first) of neutral recycling, radiation, secondary
electron emission, sputtering...
General geometry (several different ways being investigated)
Extensive code testing and physics studies: How much does SOL
turbulence spread heat flux to divertor plate? How high will pedestal
get? How much can performance be improved with lithium?
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There are significant, high-impact, projects for the
Vlasov-Maxwell system

(Each of the following make good second-year theory projects)

In general, the divergence relations ∇ ·E = %c/ε0 and ∇ ·B = 0 will not be
satisfied numerically. Is there a DG analogy to the classical Yee-scheme for
Maxwell equations? Can one do some divergence cleaning?

It appears like one needs to resolve plasma-frequency and Debye length. Are
there efficient local schemes that can circumvent this? We may have
discovered such an algorithm but it remains to be tested.

Can one make asymptotic approximations (use a Darwin field model, or
impose quasi-neutrality and use an Ohm’s law) to relax some constraints
from time- and spatial-scales?

Can one combine various fluid models already present in Gkeyll with
Vlasov-solver to do efficient hybrid simulations?

One can also imagine a lot of “easy” physics problems (nonlocal heat-transport,

particle energization, collisionless shocks, nonlinear RF physics, ...) one can do in

lower dimensions (1X/2V or 1X/3V).
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There are significant, high-impact, projects for the
multi-moment fluid and neutral fluids models

What are effective closures for ion and electron moment equations,
such that key kinetic effects for reconnection and magnetosphere
modeling are captured?

Design more efficient solvers, eliminating uninteresting time and space
scales so global, large-scale simulations are possible.

What are proper boundary conditions for the case in which a vapor is
condensing on liquid metals?

Do automated shape optimization studies for the vapor-box divertor
concepts

Apply the multi-moment fluid models to compact toroids (FRCs in
particular. Talk to Sam Cohen for exciting ideas on using Gkeyll for
FRC edge physics.)
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Non-fusion sources of funding (current and future)

We currently have funding from NASA/NSF (PI Amitava
Bhattacharjee) for the multi-fluid work, and AFOSR for surface
physics.

Other potential sources of funding will be pursued, including NSF
basic plasma sciences, ASCR for large-scale kinetic solvers, AFOSR
Computational Mathematics program, SciDAC ...
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Conclusion: We made significant algorithmic advances in
Gkeyll project

Developed DG algorithms for general Hamiltonian systems that conserve energy
exactly even with upwinding

Discovered and fixed a subtle issue with widely-used DG discretizations of
second-order operators, needed for collision terms

Discovered two ways of allowing discontinuous Hamiltonian (original algorithm
requires continuous Hamiltonian), removing need for non-local operator in parallel
direction. Developed novel local but self-adjoint projection-like operators.

Discovered and fixed subtle issues with standard algorithm when allowing magnetic
fluctuations, which had required tiny time-steps for stability for small k⊥ρs. Fixed
by noting basis functions for phi need higher order continuity than for A‖.

Studied ELM heat-load problem with gyrokinetics in simplified scrape-off-layer
(SOL) geometry, speeding up existing full kinetic (Vlasov and PIC) simulations by
many orders of magnitude.

Flexibility of DG schemes allows used of various basis sets, including “serendipity
basis functions”, which only very recently have been generalized to 4D and 5D
(Arnold, Awanou, F. Comp. Math 2011), which can be further enhanced by using
Maxwellian weighted basis functions.
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